مقدمه ای بر الگوریتم پرندگان یا Particle swarm Optimization یا PSO :: بیسین - سایت تخصصی مهندسی آب

مقدمه ای بر الگوریتم پرندگان یا Particle swarm Optimization یا PSO

 

الگوریتم PSO یک الگوریتم جستجوی اجتماعی است که از روی رفتار اجتماعی دسته‌های پرندگان مدل شده است. در ابتدا این الگوریتم به منظور کشف الگوهای حاکم بر پرواز همزمان پرندگان و تغییر ناگهانی مسیر آنها و تغییر شکل بهینه‌ی دسته به کار گرفته شد. در PSO، particleها در فضای جستجو جاری می‌شوند. تغییر مکان particleها در فضای جستجو تحت تأثیر تجربه و دانش خودشان و همسایگانشان است. بنابراین موقعیت دیگر particleهای Swarm روی چگونگی جستجوی یک particle اثر می‌گذارد. نتیجه‌ی مدل‌سازی این رفتار اجتماعی فرایند جستجویی است که particleها به سمت نواحی موفق میل می‌کنند. Particleها در Swarm از یکدیگر می‌آموزند و بر مبنای دانش بدست آمده به سمت بهترین همسایگان خود می‌روند.

اساس کار PSO بر این اصل استوار است که در هر لحظه هر particle مکان خود را در فضای جستجو با توجه به بهترین مکانی که تاکنون در آن قرار گرفته است و بهترین مکانی که در کل همسایگی‌اش وجود دارد، تنظیم می‌کند.

فرض کنید می‌خواهیم زوج مرتب [x,y] را طوری بدست آوریم که تابع F(x,y)=x2+y2، مینیمم شود. ابتدا نقاطی را به صورت تصادفی در فضای جستجو، روی صفحه‌ی x-y انتخاب می‌کنیم. فرض کنید این Swarm را به 3 همسایگی تقسیم کنیم که در هر همسایگی نقاط موجود با یکدیگر تعامل دارند. در هر همسایگی هر یک از نقاط به سمت بهترین نقطه در آن همسایگی و بهترین مکانی که آن نقطه تاکنون در آن قرار داشته است، حرکت می‌کند. برای حل یک مسئله چند متغیر بهینه‌سازی می‌توان از چند Swarm استفاده کرد که هر یک از Swarmها کار مخصوصی را انجام می‌دهند. این همان ایده‌ای است که Ant colony از آن ریشه می‌گیرد. از آنجا که دانش Swarm intelligence بسیار جدید است در حال حاضر کاربردهای کمی از آن شناخته شده است. ولی صاحبنظران معتقدند با این رشد روزافزون، Swarm intelligence می‌تواند نقش مهمی را در علوم مختلف مهندسی ایفا کند.

 PSO  حالتی از هوش دسته جمعی مبتنی بر الگوریتم است. راه حلی برای مسئله بهینه سازی در فضای جستجو یا مدل سازی رفتار اجتماعی در هنگام وجود هدفهاست.

PSO یک الگوریتم کامپیوتری مبتنی بر جمعیت و کتره ای برای حل مسئله است. PSOیک نوع هوش جمعی مبتنی بر اصول روانشناسی اجتماعی و فراهم آوردن بینشی در رفتار اجتماعی و کمک کردن به کاربردهای مهندسی است.

الگوریتمPSO برای اولین بار در 1975 توسط James KennedyوRussell C.Eberhart توصیف شد.این تکنیک ها بسیار رشد کرده اند و نسخه اصلی این الگوریتم به طور واضحی در نسخه های امروزی قابل شناخت است.

تاثیر گذاری اجتماعی و یاد گیری اجتماعی یک شخص را قادر می سازد تا ثبات دانستنی هایش را برقرار سازد.

انسان ها مسائلشان را به کمک صحبت با دیگران و نیز به کمک برهم کنش با باورهایشان، گرایش هایشان و تغییر رفتارشان حل می کنند؛ این تغییرات را می توان به طور نمونه به شکل حرکت افراد به سوی یکدیگر در فضای آگاهی اجتماعی مجسم کرد.

ذرات جمعی شبیه سازی شده ، این نوع از بهینه سازی اجتماعی می باشند.مسئله داه شده و چند راه برای ارزیابی مسئله پیشنهادی به ..... در شکل کلی "تابع شایستگی"حضور دارند.ساختار ارتباطی یا شبکه اجتماعی برای واگذار کردن هر همسایگی به یک فرد تعریف شده تا آن فرد با آن همسایگی بر هم کنش داشته باشد.سپس گروه کارگزاران به عنوان مهمان های سرزده برای راه حل های مسئله تعریف می شوند که آنها را به نام "ذرات" نیز می شناسیم؛ از این رو آنها را "ذرات دسته جمعی" نام نهاده ایم.

یک فرایند تکراری برای بهبود کاندیدا ها در طی حرکت ذرات در نظر گرفته شده است. ذرات مکررا شایستگی راه حل های کاندیدا را ارزیابی می کنند و موقعیتی را که در آن بهترین موفقیت را داشته اند ، به خاطر می سپارند. بهره راه حل کارگزاران "بهترین ذره" یا "بهترین محل" نامیده می شود. هر ذره این اطلاعات را برای دیگر ذرات موجود در همسایگی قابل دسترسی می کند. همچنین آنها نیز می توانند ببینند که دیگر ذرات موجود در همسایگی در کجا بهترین موفقیت را داشته اند.

رکت ها در فضای جستجو بوسیله ی موفقیت های قبلی ؛ با افرادی که بیشتر مواقع همگرایی دارند، سرانجام بهتر از حالتی است که نزدیک شدن به جواب بوسیله عواملی فاقد هوش جمعی ولی با همین روش صورت گیرد. گروه به صورت نمونه بوسیله ذرات در فضای چند بعدی که مکان و سرعت دارد، مدل سازی می شود.

این ذرات در میان این ابر فضا(فضای دارای بیش از سه بعد) پرواز می کنند و دو توانایی ضرورری دارند:

1-حافظه ای برای ذخیره سازی بهترین مکان خود2-آگاهی در مورد بهترین موقعیت در همسایگی خود یا در کل فضای پاسخ ها اعضای دسته جمعی مکان های خوب را به یکدیگر از طریق ارتباط انتقال می دهند و موقعیت و سرعتشان را با مکان های خوب تنظیم می کنند.

هر ذره برای اعمال تغییری مناسب در مکان و سرعت خود اطلاعات زیر را دارا می باشد:

1-"بهترین عمومی" که برای همه شناخته شده است و هنگامی که هر ذره بهترین مکان جدیدی را شناسایی کند، فورا برای بقیه ذرات اطلاعات مربوطه را به روز رسانی می کند.

2-"بهترین همسایگی"که ذره از طریق ارتباط با زیر مجموعه های گروه ، آنرا بدست می آورد.

3-"بهترین محلی"که بهترین راه حلی است که ذره تا کنون تجربه کرده است.

همه ذرات شروع به تاثیر پذیری از "بهترین عمومی" می کنند تا سرانجام به آن نزدیک شوند.

ذرات در فضای جستجو در نزدیکی "بهترین عمومی" سیر می کنند و بقیه فضا را کاوش نمی کنند ، به این پدیده"همگرایی" گفته می شود.

اگر ضریب اینرسی سرعت را کوچک انتخاب کنیم، تمام ذرات می توانند سرعتشان را کاهش دهند تا اینکه در "بهترین عمومی" به سرعت صفر نزدیکتر شوند.

یک را خروج از وضعیت همگرایی اولیه (نامطلوب) این است که دوباره به موقعیت ذرات (پس از رخ دادن همگرایی) مقدار اولیه بدهیم.

تهیه از: مهندس مجید آسیایی



پروژه تخصصی در لینکدین




نظرات (۱)

  • آواتار کامنت علی

    سلام. من مبلغ رو پرداخت کردم و از حسابم کم شد. ولی ادامه کار خطا داد و نتونستم ایمیل بدم تا لینک دانلود ارسال بشه. لطفا راهنمایی کنید چیکار کنم.

    • آواتار مدير سايت:

      فایل برای شما ارسال شده... به شکل دستی توسط ادمین هم ارسال شد. موفق باشید.

فرم ارسال نظر

ارسال نظر آزاد است، اما اگر قبلا در بیان ثبت نام کرده اید می توانید ابتدا وارد شوید.
شما میتوانید از این تگهای html استفاده کنید:
<b> یا <strong>، <em> یا <i>، <u>، <strike> یا <s>، <sup>، <sub>، <blockquote>، <code>، <pre>، <hr>، <br>، <p>، <a href="" title="">، <span style="">، <div align="">
تجدید کد امنیتی


درباره بهترين هاي بيسيـــن بدانيد...

Bird

يکي از مهمترين اهداف اين سايت تهيه آموزش هاي روان از ابزارهاي کاربردي علوم آب است.

اهميت مطالعات محيطي با ابزارهاي نوين در چيست؟

امروز با فارغ التحصيلي جمع کثير دانشجويان سالهاي گذشته و حال، با گذر از کمي گرايي ديگر صرف وجود مدارک دانشگاهي حرف اول را در بازار کار نمي زند؛ بلکه سنجش ديگري ملاک؛ و شايسته سالاري به ناچار! باب خواهد شد. يکي از مهم ترين لوازم توسعه علمي در هر کشور و ارائه موضوعات ابتکاري، بهره گيري از ابزار نوين است، بيسين با همکاري مخاطبان مي تواند در حيطه علوم آب به معرفي اين مهم بپردازد.

جستجو در بيسين


بیسین - سایت تخصصی مهندسی آب

سایت مهندسی آب بیسین با معرفی مهم ترین و کاربردی ترین نرم افزارها و مدل های شبیه سازی در حیطه مهندسی آب، تلاش به تهیه خدمات یکپارچه و محلی از محاسبات هیدرولوژیکی و هیدرولیکی می کند

W3Schools


اطلاعات سايت

  • behzadsarhadi@gmail.com
  • بهزاد سرهادي
  • شناسه تلگرام: SubBasin
  • شماره واتساپ: 09190622992-098
  • شماره تماس: 09190622992-098

W3Schools