برنامه نویسی پایتون :: بیسین - سایت تخصصی مهندسی آب

ابزار وبمستر

Bootstrap Example

عضويت در خبرنامه ايـميـل پايگاه بيسيــن - عضويت پس از کليک بر روي لينک فعال سازي که براي شما ارسال خواهد شد تکميل مي شود

پشتيباني شده با بيسين

تجزیه و تحلیل تغییر پوشش زمین با پایتون و GDAL


تصاویر ماهواره ای توانایی دیدن سطح زمین در سال های اخیر را برای ما فراهم کرده است، اما ما در درک پویایی پوشش زمین و تعامل با عوامل اقتصادی، جامعه شناختی و سیاسی چندان موفق نبوده ایم. برخی از نقص های این تجزیه و تحلیل در استفاده از نرم افزار تجاری GIS مشاهده شد، اما محدودیت های دیگری نیز در نحوه اعمال فرآیندهای منطقی و ریاضی بر روی مجموعه ای از تصاویر ماهواره ای وجود دارد. کار با داده های جغرافیایی روی پایتون امکان فیلتر کردن، محاسبه، برش، تلفیق و صادرات داده های رستری و برداری را با استفاده شرایط کارآمدی از توان محاسباتی فراهم می کند و دامنه بیشتری در تجزیه و تحلیل داده ها دارد.


آیا مدل سازهای عددی بدون برنامه نویسی محدود هستند؟


یک سؤال بزرگ وقتی پیش آمد که در دوران مدرن یا در 5 سال گذشته با مدل سازی عددی سر و کار داشته باشیم، و این سؤال این است که مهارت های برنامه نویسی باید در یک هیدروژئولوژیست - مدل ساز عددی چقدر وجود داشته باشد؟ این سؤال بالاتر از این سؤال است: آیا یک متخصص هیدروژنولوژیست - باید به هر زبانی برنامه نویسی کد تولید کند؟


Google Earth Engine چیست؟


یکی از جدیدترین برنامه های ارائه شده توسط Google،محیط Google Earth Engine، یک پلت فرم پیشرفته پردازش زمین شناسی مبتنی بر فضای ابری است که عمدتاً برای تجزیه و تحلیل داده های زیست محیطی در مقیاس سیاره ای طراحی شده است. این مجموعه ای از کاتالوگ چند پتایی از تصاویر ماهواره ای و مجموعه داده های مکانی را در اختیار کاربران قرار می دهد تا به کاربران امکان تجسم، دستکاری، ویرایش و ایجاد داده های مکانی را به روشی آسان و سریع ارائه دهند. این مجموعه طیف گسترده ای از ابزارهای دستکاری مکانی را در اختیار دانشمندان، محققان و توسعه دهندگان قرار می دهد تا تغییرات، روند نقشه ها و تعیین اختلافات در سطح زمین را تشخیص دهند.


راهنمای دریافت داده ماهواره - داده بارش با اسکریپت پایتون

شکل 1: به عنوان مثال نتایج جستجوی Mirador برای IMERG.


بررسی اجمالی:

داده های GPM IMERG را با استفاده از پایتون بخوانید.

این دستورالعمل نحوه خواندن داده ها از مجموعه داده IMERG ماموریت جهانی اندازه گیری بارش (GPM) با استفاده از پایتون را نشان می دهد.


بهترین شکل:

کاربر می خواهد داده های GPM IMERG را با استفاده از پایتون بخواند


پایش فضایی کیفیت آب


با معرفی کیفیت آب Ulyssys Viewer، یک اسکریپت سفارشی برای تجسم پویا از شرایط کلروفیل و رسوب بدنهای آب بر روی تصاویر Sentinel-2 و Sentinel-3 می توان بدست آورد. فیلمنامه آندرس زلینسکی و گرگلی پادنیی-گلیس در دور دوم مسابقه اسکریپت سفارشی Sentinel Hub جایزه اول را بدست آورده است و در مخزن GitHub ما موجود است. این پست بخشی از سلسله پستهای  مهمان است که توسط نویسندگان اسکریپت نوشته شده است، در مورد ورود آنها به مسابقه ما صحبت می کند، به بینش بیشتری در مورد نحوه کار اسکریپت ها و آنچه می توان با استفاده از آنها دست یافت.


پایش سطح آب سدها از طریق تصاویر ماهواره


در شکل بالا سطح آب جاری سد استرکفونتین (98.3٪)، سد براندولی (59.9٪) و هاکسکین پان (0٪) در آفریقای جنوبی با استفاده از تصاویر Sentinel-2 تهیه شده توسط ESA تعیین شد. همه ما از طریق مستندهای تلویزیونی، اخبار در رسانه های رسمی یا بسترهای رسانه های اجتماعی بیشتر و بیشتر در آگاهی از تصاویر ماهواره ای قرار می گیریم. دلیل اصلی همه اینها، سیاست داده های باز است که ابتدا توسط ناسا و بعد از آن توسط برنامه کوپرنیک اتحادیه اروپا اتخاذ شده است، که تصاویر ماهواره ای را تقریباً برای همه قابل دسترسی کرده است. قادر بودن به دیدن سیاره ما از راه دور، دیدگاه های ما در مورد کره زمین و چگونگی تغییر آن را تغییر می دهد. ما می توانیم تغییرات فصلی، ویرانی های ناشی از بلایای طبیعی یا پیامدهای تغییرات آب و هوایی را مشاهده کنیم. 


تهیه لایه تنوع پوشش زمین با eo-learn - قسمت 2

پشته ای از تصاویر Sentinel-2 از یک منطقه کوچک در اسلوونی، و به دنبال آن یک پیش بینی پوشش زمین، که از طریق روش های ارائه شده در این پست بدست آمده است. قسمت دوم درباره کاربری اراضی و طبقه بندی پوشش اراضی با eo-Learn در اینجا در دسترس است. این قسمت از امتداد قسمت اول انتخاب می شود، جایی که ما یک رویکرد اساسی در مورد موارد زیر ارائه کردیم:

  • تقسیم منطقه مورد علاقه (AOI) به EOPatches
  • به دست آوردن داده های تصویر Sentinel-2 و ماسک های ابری
  • محاسبه اطلاعات اضافی از جمله شاخص پوشش گیاهی با اختلاف عادی (NDVI)، شاخص آب عادی تفاوت (NDWI)، هنجار اقلیدسی باند های شامل (NORM) و غیره.
  • افزودن داده های مرجع شطرنجی از داده های بردار به EOPatches