آموزش پایتون :: بیسین - سایت تخصصی مهندسی آب

ابزار وبمستر

Bootstrap Example

تصوير ثابت

عضويت در خبرنامه ايـميـل پايگاه بيسيــن - عضويت پس از کليک بر روي لينک فعال سازي که براي شما ارسال خواهد شد تکميل مي شود

پشتيباني شده با بيسين

آموزش پایتون: رگرسیون - پیش بینی و پیش گویی

خوش آمدید به بخش پنجم مبحث یادگیری ماشین از مجموعه آموزش Python. تا به اینجا، محتوای آموزشی رگرسیون را پوشش می دهد. پیش از این، ما داده ها را جمع آوری کرده ایم، آن ها کمی اصلاح شده، طبقه بندی شده آموزش داده و حتی طبقه بندی ها آزمون شده اند. در این قسمت، ما قصد داریم از طبقه بندی ها استفاده کنیم تا در واقع برخی از پیش بینی ها برای ما انجام شود. کد تا این لحظه که ما استفاده می کنیم به صورت زیر است:


آموزش پایتون: رگرسیون - یادگیری ماشین و آزمون


خوش آمدید به بخش چهارم از آموزش ماشین با سری آموزش Python. در آموزش های قبلی، داده های اولیه را به دست آوردیم، ما آن را به صورت دلخواهی تغییر دادیم و دستکاری و اصلاح کردیم، و سپس شروع به تعریف ویژگی هایمان کردیم. Scikit-Learn اساسا نیازی به کار با Pandas و فریم های داده ندارد، من فقط ترجیح می دهم اطلاعات مربوط به آن را مدیریت کنم، زیرا سریع و کارآمد است. در عوض، Scikit-learn اساسا نیاز به آرایه های numpy دارد. داده های فرعی پانداها به راحتی می توانند به آرایه های NumPy تبدیل شوند، بنابراین فقط برای انجام کار برای ما صورت می پذیرد.


آموزش پایتون: رگرسیون - معرفی و داده ها


به یک دوره آموزشی فراگیر و عمیق خوش آمدید.

به مقدمه ای بر بخش رگرسیون یادگیری ماشین با مجموعه آموزشی Python خوش آمدید. با این حال، شما Scikit-Learn را از قبل نصب کرده اید. اگر نه، آن را دریافت کنید، همراه با پانداها و matplotlib!


اگر توزیع علمی پیمایشی قبل از کامپایل پایتون مانند ActivePython را داشته باشید، باید قبلا numpy، scipy، scikit-learn، matplotlib و pandas را نصب کرده باشید. اگر نه، دستورهای زیر را انجام دهید:


آموزش عملی یادگیری ماشین با معرفی پایتون


به یک دوره آموزشی فراگیر و عمیق خوش آمدید.

هدف این درس این است که به شما یک درک کامل از یادگیری ماشین، نظریه پوشش، کاربرد و عملکرد درونی الگوریتم های یادگیری نظارت شده، بدون نظارت و یادگیری عمیق بدهد.


در این سری، رگرسیون خطی، نزدیک ترین K همسایگان، ماشین های بردار پشتیبانی (SVM)، خوشه تخت، خوشه بندی سلسله مراتبی و شبکه های عصبی را پوشش می دهیم.


درباره بهترين هاي بيسيـــن بدانيد...

Bird

يکي از مهمترين اهداف اين سايت تهيه آموزش هاي روان از ابزارهاي کاربردي علوم آب است.

اهميت مطالعات محيطي با ابزارهاي نوين در چيست؟

امروز با فارغ التحصيلي جمع کثير دانشجويان سالهاي گذشته و حال، با گذر از کمي گرايي ديگر صرف وجود مدارک دانشگاهي حرف اول را در بازار کار نمي زند؛ بلکه سنجش ديگري ملاک؛ و شايسته سالاري به ناچار! باب خواهد شد. يکي از مهم ترين لوازم توسعه علمي در هر کشور و ارائه موضوعات ابتکاري، بهره گيري از ابزار نوين است، بيسين با همکاري مخاطبان مي تواند در حيطه علوم آب به معرفي اين مهم بپردازد.

جستجو در بيسين


ابزارهاي نوين

بیسین - سایت تخصصی مهندسی آب

بیسین جهت ارائه مطالب و خدمات تخصصی در حیطه نرم افزارها و مدل های شبیه سازی مهندسی آب با رویکرد پژوهشی-آموزشی ایجاد شده است که توسعه خود را در گرو همکاری مخاطبان می بیند.

اطلاعات سايت

  • www.Basin.ir@gmail.com
  • بهزاد سرهادی
  • تاريخ امروز:
  • شناسه تلگرام: Basin_ir
  • شماره تماس: 09190622992-098

W3Schools