11 روش کلاسیک پیش بینی سری زمانی در پایتون - بخش دوم

از روش های یادگیری ماشین می توان برای طبقه بندی و پیش بینی مسائل سری زمانی استفاده کرد. قبل از کاوش در روشهای یادگیری ماشین برای سری های زمانی، بهتر است اطمینان حاصل کنید که آموزش روشهای پیش بینی سری زمانی خطی کلاسیک را به اتمام رسانده اید. روش های کلاسیک پیش بینی سری زمانی ممکن است بر روی روابط خطی متمرکز شده باشند، با این وجود، این روش ها پیچیده هستند و در طیف گسترده ای از مسائل عملکرد خوبی دارند، با این فرض که داده های شما به درستی آماده شده و روش به خوبی پیکربندی شده است.



را با تمرین در یک مجموعه دادهیاد میگیرد، آنجا که
تعداد ابعاد ورودی است و o تعداد از ابعاد خروجی با توجه به مجموعه ای از ویژگی های
و یک هدف y، می توان یک تقریبنده تابع غیر خطی را برای هر دو طبقه بندی یا رگرسیون یاد گرفت. این تفاوت از رگرسیون لجستیک است، در حالی که بین ورودی و لایه خروجی، می تواند یک یا چند لایه غیر خطی وجود داشته باشد که لایه های مخفی هستند. شکل 1 یک MLP مخفی با خروجی اسکالر را نشان می دهد.

