بیسین - سایت تخصصی مهندسی آب

عضويت در خبرنامه ايـميـل پايگاه بيسيــن - عضويت پس از کليک بر روي لينک فعال سازي که براي شما ارسال خواهد شد تکميل مي شود




آشنایی با 11 قنات شاهکار ایرانی

کمبود آب مساله امروز و دیروز فلات ایران نیست، مشکلی هزاران ساله است که البته نیاکان ما توانسته‌اند با خلاقیت از پس حل آن بر بیایند و نتیجه این تلاش، شگفتی‎ای به نام «قنات» است. «کاریز، قنات یا کهریز»  مجرای تونلی شکلی  است که در زیر زمین کنده شده تا آب در آن جریان یابد. این مجرا در عمق زمین و برای ارتباط دادن رشته چاه‌هایی که از «مادر چاه» سرچشمه می‌گیرد، حفر می‎شود و به منظور هدایت آب و مدیریت آب برای کشاورزی کار گرفته می‌شود. قنات‌ها ممکن است تا رسیدن به سطح زمین هزارها متر طول داشته باشند و سرانجام آب این کاریزها به روی سطح زمین می‌آید که به این محل «دهانه کاریز، سر قنات، یا مظهر» می‌گویند. ایرانی ها را مخترع قنات می‌دانند، مخترع شیوه‌ای که بهترین راه برای جمع‌آوری آب‌های زیرزمینی است.

می‎گویند ایران بیش از 36 هزار رشته قنات فعال دارد و حالا 11 رشته از این قنات‎ها جهانی شده و به فهرست میراث جهانی یونسکو راه یافته است.  فهرستی موضوع آن حفظ آثار تاریخی، طبیعی و فرهنگی بشر است که اهمیت جهانی دارند و متعلق به همه انسان های زمین، فارغ از نژاد، مذهب و ملیت خاص هستند و حفاظت از این آثار پس از ثبت در عین باقی ماندن در حیطه حاکمیت کشور مربوطه، برعهده همه کشورهای عضو است.

روش‌های برآورد آبدهی - رواناب بلندمدت

الف- روش نقطه‌ای 

در این شیوه، نتایج نقطه‌ای آنالیز دبی متوسط سالانه طولانی مدت ایستگاه‌های آب سنجی انتخابی، به منطقه مطالعاتی تعمیم داده می‌شود. این روش ممکن است بدو صورت انجام گیرد:


1- ضریب جریان (Runoff Coefficient :C)

در صورتی که ایستگاه هیدرومتری مجاور حوضه دارای شرایط هیدروکلیماتیکی، پدولوژیکی و ژئومورفولوژیکی مشابه با منطقة مورد مطالعه باشد، می‌توان ضریب جریان محاسبه شده برای ایستگاه را جهت برآورد میزان آبدهی حوضه فاقد آمار استفاده نمود که از رابطه ذیل برای برآورد آبدهی در این مناطق استفاده می‌شود:

رده و تیپ واحد اراضی - انواع خاک ها

- رده Aridisols

در این خاکها رطوبت کافی برای گیاهان مزوفایت (Mesophytes ) وجود ندارد. در بخش عمده ای از سال که گرمای خاک برای رشد گیاه مناسب است . رطوبت خاک در منطقه پژمردگی بوده و یا محلول خاک به دلیل شروی زیاد قابل استفاده گیاهان نیست. در این خاکها رطوبت خاک به ندرت بمدت نود روز متوالی در حد ظرفیت نگهداری (F.C ) می باشد. در خاکهای این رده ، افقهایی وجود دارد که ممکن است تحت شرایط طبیعی فعلی تشکیل شده و یا آثاری از دورانهای پرباران پیشین باشد. رنگ خاک معمولا روشن بوده و نمونه خشک آن ساختمان سخت و محکمی ندارد ولی در خاکهایی با بافت ریز و سنگین قطعات خاک ممکن است سخت باشد. بعضی از خاکهای این رده در دوره هولوسن (Holocene ) تشکیل شده و برخی دیگر نیز قدیمی ترند و چون در نیمرخ خاکهای اخیر ترتیب و توالی یعنی از افقهای ژنتیکی وجود ندارد می توان نتیجه گرفت که شرایط اقلیمی بیش از یکبار در ضمن تشکیل خاک تغییر کرده است. رژیم رطوبتی خاکها در منطقه از نوع Ardic  و رژیم حرارتی آن نیز از نوع Thermic  می باشد.

دانلود نرم افزار GMS 10 کرک شده - مدل MODFLOW


سفره آب زیرزمینی (یا همان آبخوان) یک لایه ای متشکل از آب در زیر زمین است که در لایه‌های تحکیم نیافته (گراول، ماسه و سیلت) یا در سنگ‌های دارای درز و شکاف ایجاد می ‌شود. این آب در چرخه ها و سیستم های مختلف کره ی زمین تاثیرگذار است. تهیه ی یک مدل مفهومی از سفره های آبی با استفاده از آمار، داده ها و اطلاعات موجود می تواند در رسیدن به نتایج دقیق تری در زمینه مطالعات آب های زیرزمینی منجر شود.
کمپانی Aquaveo با نامی که به معنی "آب" است در زمینه ارائه ابزارها و راه حل های نرم افزاری برای مدلسازی آب های زیرزمینی و نواحی آبخیز به فعالیت می پردازد. WMS و GMS دو نرم افزار کاربردی و قدرتمند از این کمپانی می باشند که توانسته اند در میان مهندسین فعال در این حوزه به محبوبیت و شهرت برسند. ابزار GMS یا Groundwater Modeling System نرم افزار بسیار پیچیده و جامعی برای مدل سازی آب های زیرزمینی می باشد. این نرم افزار توسط هزاران نفر در بخش های دولتی، بخش های خصوصی و سایت های بین المللی در بیش از 90 کشور جهان استفاده می شود. این نرم افزار در حقیقت واسط گرافیکی و به عنوان پیش پرداز و پس پرداز برای 10 مدل آب زیرزمینی است که عمدتا به روش های عددی تفاضل محدود و اجزاء محدود به شبیه سازی کمی و کیفی آب های زیرزمینی می پردازند. این مدل توسط آزمایشگاه تحقیقات محیط زیست دانشگاه Brigham Young و با مشارکت بخش مهندسی آب ارتش ایالات متحده توسعه داده شده است. GMS نرم افزاری با رابط کاربری گرافیکی و کاملاً قابل فهم است که قابلیت های فراوانی را در زمینه مدل سازی و شبیه سازی سه بعدی آب های زیرزمینی در اختیار کاربرانش قرار می دهد. مدل های سه بعدی ساخته شده توسط GMS در واقع سیستم واقعی آب های زیرزمینی را شبیه سازی می کنند تا کاربر قادر به تجزیه و تحلیل، مدیریت و همچنین بررسی کنش ها و واکنش ها در یک سیستم هیدرودینامیکی باشد.

شرح مختصری بر مدل های MODFLOW و MT3DMS و داده های مورد نیاز


اندکی درباره مدل MODFLOW:

از جمله کدهایی که کاربردهای گسترده ای داشته و از مقبولیت بالایی نزد هیدروژئولوژیست ها برخوردار بوده کد MODFLOW می باشد که توسط سازمان زمین شناسی آمریکا ارائه شده است. رابط های گرافیکی گوناگونی برای این کد تهیه شده اند؛ دلیل اصلی مقبولیت این کد (هر چند نمی توان آن را برای همه موارد تخصصی مطالعه مدل پیشنهاد نمود) این است که برای راه حل های تحلیلی گوناگونی ارزیابی و کنترل شده و سامانه های هیدروژئولوژیکی مختلفی در سراسر جهان را شبیه سازی نموده است. همچنین نرم افزارهای مختلف آن ارزان و در دسترس همگان می باشد. 

از جمله ویژگی های دیگر MODFLOW می توان به ساختار ماژولی آن اشاره نمود. بدین ترتیب که می توان برای فرآیندهای خاص هیدرولوژیکی ماژول خاصی را فعال یا غیرفعال نمود. همچنین مدول های جدیدی برای مسایل مربوط به جریان (مثل اندرکنش جریان رودخانه با آبخوان) یا روش های عددی جدید در حال توسعه می باشند. این دلایل سبب شده MODFLOW از سوی بسیاری از سازمان ها به عنوان نرم افزار برتر مورد استفاده قرار گیرد.

مقدمات تهیه داده های مورد نیاز - مدل HEC-HMS - بخش اول

شناسایی و به دست آوردن داده های اولیه

قبل از برنامه ریزی و انجام بازدیدهای صحرایی باید با بررسی مجموع های از اطلاعات اولیه و نقشه های عمومی از منطقه با محدوده مطالعاتی آشنایی پیدا کرد. شناسایی داده های مورد نیاز و یا داده های که باید از بازدیدهای مقدماتی به دست آید، کار جمع آوری اطلاعات را در مراحل بعدی آسان تر می سازد. هرچه داده های بیش تری در دسترس قرار گیرد، اعتماد بیش تری به محاسبات و تحلیل های نهایی برای برآورد حداکثر سیل محتمل وجود خواهد داشت. نمودار مراحل تهیه آمار و اطلاعات و بررسی های اولیه آن ها در شکل ذیل آمده است. این مراحل شامل موارد زیر می باشد.


نقشه های توپوگرافی و یا محلی

نقشه های توپوگرافی با مقیاس های 1:250000 و 1:50000 از منطقه و در موارد خاص نقشه های با مقیا س بزرگ تر، مانند 1:25000 ، باید جمع آوری شود. این نقشه ها باید موقعیت پروژه، جاده های دسترسی، جانمایی سد و محدوده حوضه را نشان دهند. نقشه های توپوگرافی ویژه از قبیل نقشه هایی که در طی طراحی سدها مورد استفاده قرار گرفته اند، اغلب از سازمان های ذیربط و یا از شرکت های مهندسین مشاور قابل دسترس هستند. شکل زیر برای نمونه نقشه بخشی از حوضه آبریز رودخانه بختیاری را نشان می دهد که با استفاده از کلیه نقشه های همجوار آن می توان حوضه رودخانه بختیاری را تا محل مورد نظر برای پروژه مشخص (مثلا محل ساختگاه سد بختیاری) مرزبندی نمود.

مسایل کلیدی و نکات مهم در برآورد حداکثر سیل محتمل PMP و PMF

می توان گفت PMF یک احتمال وقوع مشخص ندارد، هر چند برخی مانند ICOLD دوره بازگشت یک در یک میلیون سال و یک در ده میلیون سال را برای آن قایل هستند. اگر کلیه فاکتور های دخیل به طور مجزا بیشینه شود، مقادیر PMF اغلب به طور قابل ملاحظه ای بزرگ تر از مقداری که در حالت معمول محاسبه می شود، به دست می آید. در شرایطی که PMF براساس PMP برآورد شود، تعیین شرایط پیشین بارندگی، جریان، رطوبت خاک و مانند آن باید توسط مهندس هیدرولوژیست به طور منطقی قبل از آغاز PMP تعیین شوند. واضح است که اگر PMP که خود احتمال وقوع فوق العاده اندکی دارد، با شرایط پیشین مبتنی بر نفوذ صفر که آن نیز احتمال وقوع خیلی کمی دارد ترکیب شود، برآورد PMF حاصل به طور غیرمعقولی می تواند بالا باشد.

برخی از سوالات اساسی در برآورد PMF را می توان به شرح زیر طبقه بندی نمود.

مدل جهانی فرسایش خاک (USLE) و کاربرد آن

در سده اخیر تحقیقات گسترده ای بر روی عوامل و فاکتورهای موثر بر فرسایش خاک صورت است و مدل ها و روش های زیادی نیز در این رابطه پیشنهاد شده است که هر کدام دارای معایب و مزایایی می باشند. مدل‎های ریاضی فرسایش خاک (اعم از انواع کمی و کیفی) از جمله مواردی هستند که در نقاط مختلف ایران و جهان به منظور مطالعات فرسایش و رسوب حوضه‎های مختلف بکاربرده شده‎اند و در بعضی شرایط نیز نتایج قابل اعتمادی نیز بدست آمده است.

مدل جهانی فرسایش خاک  (USLE) و کاربرد آن

دانشمندان و محققین حفاظت خاک در ایالات متحده امریکا مشاهده نمودند که عواملی از قبیل نوع و مقدار بارندگی، طول و تندی شیب، فرسایش‌پذیری خاک، سیستم‌های زراعی و عملیات مدیریتی بر تلفات خاک از طریق فرسایش سطحی و شیاری موثرند. این افراد فعالیت‌های گسترده‌ای برای کمی کردن اثرات این عوامل بر فرسایش آغاز نمودند.

اولین تلاش برای کمی ساختن تاثیر بعضی از این عوامل با ایجاد کرت‌های فرسایش در سال 1914 به وسیله میلر  سرپرست بخش خاک دانشگاه میسوری  انجام گرفت. نمونه‌ها‌ی آب و رسوب از رواناب جمع شده در مخازن بتونی واقع در انتهای کرت‌ها‌ی برداشت شد. سپس آقای بنت  مطالعه مشابهی در نواحی دیگر که دارای شرایط متفاوتی از لحاظ بارندگی، خاک و عملیات زراعی نسبت به کرت‌های کنترلی در میسوری بودند را انجام داد.

تهیه مدل مفهومی شبیه ساز کیفی آب زیرزمینی

طبق روند مدل سازی کیفی، پس از مشخص بودن اهداف مدل و انجام مطالعات پایه در این مرحله تهیه مدل مفهومی به عنوان پیش نیاز مدل ریاضی ضروری است. معمولا در تهیه یک مدل مفهومی، موارد زیر باید مشخص شود:

- فرم هندسی محدوده آبخوان

- نوع تشکیلات زمین شناسی آبخوان از نظر همگنی و ناهمگنی

- نحوه بررسی مساله (به صورت یک، دو و یا سه بعدی)

- تعیین رژیم جریان به صورت ورقه ای و یا متلاطم

- تعیین نوع منبع آلودگی (نقطه ای، خطی، توزیعی)

- نوع آلاینده ها و نحوه توزیع آن

- بررسی تغییر مکانی و زمانی متغیر حالت (غلظت) در آبخوان

- تغذیه و تخلیه مواد محلول در سامانه کیفی آبخوان

- شرایط مرزی و ارتباطی که از نظر کیفیت، آبخوان، با خارج از محدوده خود دارد.

روش محاسبه هایتوگراف بارش مازاد با استفاده از روش SCS-CN

مقدمه

هدف از این توضیحات، این است که کاربران یاد بگیرند تا چگونه به محاسبه هایتوگراف بارش مازاد بر اساس هایتوگراف بارش کل و با استفاده از اصول سازمان حفاظت خاک آمریکا (SCS) و مشخصا شماره منحنی رواناب (CN) بپردازند. در این مراحل فرض می شود که کاربر در حال حاضر دارای یک باران نمود بارش کل در محیط اکسل است و این باران نمود بارش در مجموع برای یک رویداد واحد می باشد. و سپس از آن به عنوان ورودی برای جداسازی بارندگی انتزاعی و یا تلفات با استفاده از روش SCS CN استفاده می شود. دو خروجی از این مرحله، از جمله بارش انتزاعی و باران نمود بارش مازاد وجود دارد. این توضیحات نیز مستلزم آن است که CN برای ناحیه مطالعاتی شناخته و محاسبه شده باشد.

بر طبق توضیحات و آموزش های SCS در کل یک بارش جامع (P) از سه بخش مجزا تشکیل شده است:

1- Initial abstraction یا Ia

2- Continuous abstraction یا Fa

3- Excess rainfall یا Pe

بخش اول مشخص کننده مقدار بارشی است که باید ببارد تا خاک تا مرحله جاری شدن رواناب از نفوذ ارضاء شود. عموما این مقدار به شکل 20٪ از حداکثر ذخیره سازی در کل یا احتباس حوضه (S) محاسبه می شود. بنابراین، Ia = 0.2S در نظر می گیریم. در ادامه بخش دیگری از بارش صرف اقناع ذخیره خاک می شود که با Fa آن را شناختیم. که در این حالت عبارت ذیل برای محاسبه Fa با استفاده از مقدار کل بارش (P) و حداکثر احتباس (S) بکار گرفته می شود. 

فرآیند مدل سازی کیفی آب های زیرزمینی

به طور کلی قبل از شروع تهیه مدل ریاضی کیفی آب های زیرزمینی، ابتدا باید هدف از تهیه مدل مشخص شود. به خصوص آن که پس از تهیه مدل، چگونه می توان از این مدل جهت مدیریت کیفی آبخوان استفاده کرد. بنابراین اولین گام در فرآیند مدل سازی، تعریف اهداف و در پی آن تهیه مطالعات پایه کیفیت آبخوان مورد نظر می باشد. مهم ترین کمکی که شناخت اهداف می تواند در روند مدل سازی ارائه کند، در نظر گرفتن جزییات و دقت کار بوده و این که با چه درجه از دقت، مدلسازی باید انجام گیرد. مثلا داده های مورد نیاز، شبکه بندی منطقه و انتخاب روش مناسب حل معادلات و یا مدل مناسب برای منطقه، کاملا متاثر از اهداف مدل می باشند.

در گام دوم با توجه به این که پیش نیاز مدل کیفی آبخوان، تهیه مدل کمی و یا مدل ریاضی جریان در آب های زیرزمینی می باشد، لذا در این گام، مدل کمی باید تهیه شود. این مدل به عنوان منبعی از اطلاعات مورد نیاز در مدل کیفی مانند سرعت جریان و داده های بیلان آب در هر یک از گره های مدل عمل می کند. به همین جهت مدل و همچنین گزارش فنی مدل ریاضی جریان باید با دقت کامل تهیه شده و در دسترس باشد تا بتوان از آن به سهولت در روند تهیه مدل کیفی استفاده کرد.

استفاده از هیدروگراف واحد جهت استخراج هیدروگراف رواناب در محیط اکسل

مقدمه
هدف از این بخش آن است که چگونه با استفاده از یک هیدروگراف واحد اقدام به استخراج هیدروگراف رواناب شود؟ برای استفاده از این مرحله، کاربران نیاز به اطلاعات بارش مازاد و هیدروگراف واحد حوضه برای مدت زمان بارش مازاد مشاهده ای دارند. خروجی از این مرحله یک هیدروگراف رواناب مستقیم است. توضیح گرافیکی چگونگی استفاده از یک هیدروگراف واحد جهت استخراج یک هیدروگراف رواناب مستقیم، برای اولین بار ارائه شده است. یک هیدروگراف واحد یک هیدروگراف حاصل از یک اینچ یا یک میلی متر بارش نازل شده به شکل یکنواخت بر مساحت کل حوضه آبریز است. برای مثال، اگر یک بارش P1 اینچ در طول یک بازه زمانی از Δt رخ دهد، هیدروگراف رواناب کل P1 همان هیدروگراف واحد کل ضرب در مقدار بارش می باشد که منحنی آبی (PUH_1) در شکل زیر آن را نمایش می دهد. اگر بارش به همین مقدار ختم شود آنگاه می توان مقدار رواناب مستقیم را به همین گونه استخراج نمود؛ اما اگر بارش با مقداری فرضا معادل P2 تداوم داشته باشد با یک تأخیر زمانی هیدروگراف مضروب به مقدار محاسباتی اولیه جمع و نتیجه به شکل رواناب مستقیم حاصل خواهد شد. مقدار دوم را می توان PHU_2 نامیده و شکل آن با رنگ قرمز در تصویر ذیل مشخص شده است. به همین شکل می توان ادامه داد.

اهداف مدل سازی کیفی آبخوان

معمولا قبل از شروع مدل سازی کیفی یک آبخوان، باید هدف از مدل سازی روشن باشد. به این صورت که از ابتدا مشخص باشد که در پایان مدل سازی چه انتظاری از مدل وجود دارد و نتایج آن تا چه مقدار می تواند، نیاز های مدیریت آبخوان را برآورده کند. به طور کلی می توان بیان داشت که مهم ترین هدف مدل سازی کمی و کیفی یک آبخوان، دست یابی به نتایجی جهت مدیریت آبخوان می باشد. این مدیریت با توجه به نوع آلاینده های توزیعی، موضعی و خطی و روند آلودگی نسبت به زمان و جبهه پیش روی آلودگی متفاوت می باشد. از طرف دیگر برنامه ریزی از حفاظت از چاه های بهره برداری به طور عام و یا تعدادی از چاه های بهره برداری تامین آب شرب به طور خاص می تواند در ضمره اهداف مدل کیفی باشد. ضمن اینکه تصمیم گیری در مورد ارائه راهکارهایی جهت رفع آلودگی و طراحی شبکه چاه های نمونه برداری کیفی نیز می تواند با استفاده از نتایج مدل کیفی صورت پذیرد.

مبانی مدل سازی کیفی آب های زیرزمینی - انواع منشأء آلودگی

مدل ریاضی در آلودگی آب های زیرزمینی در واقع فرم ریاضی معادلات بیلان و حرکت و انتقال مواد محلول را در یک محیط آب زیرزمینی نشان می دهد که با تلفیق آنها و با فرض پیوستگی محیط، معادلاتی به صورت معادلات دیفرانسیل جزیی نتیجه می شود. این معادلات در نقاط مختلف یک آبخوان نوشته شده و از طریق روش های مختلف، برای مکان ها و زمان های گوناگون حل می شوند.

مدل های ریاضی در آلودگی آب های زیرزمینی و یا به عبارت دیگر حل معادلات دیفرانسیل جزیی در سامانه کیفی آبخوان می تواند به دو صورت تحلیلی و عددی انجام شود. با این که روش دقیق حل معادلات روش تحلیلی می باشد، ولی پیچیدگی سامانه آبخوان، غیرهمگنی سازندهای زمین شناسی، برداشت و تغذیه های متفاوت چه به صورت طبیعی و چه مصنوعی و به خصوص وجود آلاینده های مختلف باعث می شوند که حل تحلیلی معادلات به جز در شرایط ساده و حالت خاص، امکان پذیر نباشد. به همین جهت استفاده از روش های عددی در تهیه مدل های ریاضی در آب های زیرزمینی به دلیل قابلیت های ویژه ای که دارند، بیش تر از سایر روش ها معمول می باشد.

نحوه جدا سازی دبی پایه از جریان رواناب به روش Recession

مقدمه

منظور این توضیحات، فرآگیری روش جداسازی دبی پایه یک مسیر آبراهه ای، از جریان کل هیدروگراف است. در این آموزش توضیحات بر روی یک هیدروگراف مجزا از یک واقعه بارش تشریح می گردد. فرض بر این است که کاربر در محیط اکسل اطلاعات زمانی و حجمی این هیدروگراف را در اختیار دارد. (نمونه را دانلود کنید).


دستورالعمل

دبی پایه چیست؟

دبی پایه بخشی از رودخانه است که به طور مستقیم از بارش مازاد در طول یک رویداد طوفان تولید شده است. به عبارت دیگر، این مقدار معادل با جریانی است که در جریان همراه رواناب مستقیم بدون داشتن سهمی از بارش وجود دارد. برآورد دبی پایه و رواناب مستقیم برای درک هیدرولوژی یک حوزه آبخیز، از جمله تعاملات آب سطحی و زیر سطحی، نقش شهرنشینی بر رواناب و سلامت زیستگاه آبزیان موجود در مسیر جریان مفید است. روش ارائه شده در اینجا قابل استفاده برای یک هیدروگراف اوج ناشی از وقوع توفانی تک است.

شرحی بر انواع روش های میان یابی داده ها و توزیع آنها بر روی گره های مدل

میان یابی داده ها و توزیع آنها بر روی گره های مدل

انواع داده های مورد نیاز در مدل سازی آب های زیرزمینی در بخش های گذشته این نوشتار مورد اشاره قرار گرفته است. داده های صحرایی پس از جمع آوری و اصلاح، باید به عنوان مقادیر پارامتری یا متغیر با روش های مناسب برای گره ها یا سلول ها/المان ها تعریف شوند. چگونگی توزیع داده های گوناگون در گستره مدل بسیار مهم می باشد.


تطبیق پارامترها با نوع مدل

نخستین مساله ای که در انتقال داده های صحرایی به شبکه باید در نظر داشت تطبیق پارامترها با نوع مدل است. مثلا در مدل های کاملا سه بعدی و نیمرخ، اندازه گیری هدایت هیدرولیکی باید به صورت نقطه ای باشد که معمولا به سادگی می توان آن را در صحرا به دست آورد. در مدل های منطقه ای دو بعدی و شبه سه بعدی به مقادیر میانگین در راستای قائم نیاز می باشد که می توان آنها را به صورت غیرمستقیم با میانگین گرفتن از نتایج اندازه گیری های نقطه ای یا به صورت مستقیم به کمک آزمایش های پمپاژ در چاه هایی که در تمام ضخامت اشباع آبخوان نفوذ کرده باشند، به دست آورد.

دریافت راهنمای فارسی آمایش سرزمین در علوم محیطی - ArcGIS

آمایش سرزمین در سیستم حرفه‌ای و دانشگاهی ایران تنها به برنامه ریزی فضایی در مقیاس ملّی و منطقه‌ای اطلاق می‌شود. در واقع و در سیستم حرفه‌ای جهانی، بخشی از مفهوم کلّی برنامه ریزی شهری و منطقه‌ای به حساب می‌آید.

آمایش سرزمین، ارزیابی نظام‌مند عوامل طبیعی، اجتماعی، اقتصادی، فرهنگی و... به منظور یافتن راهی برای تشویق و کمک به جامعه بهره‌برداران در انتخاب گزینه‌هایی مناسب برای افزایش و پایداری توان سرزمینی در جهت برآورد نیازهای جامعه است. به بیانی دیگر توزیع متوازن و هماهنگ جغرافیای کلیه فعالیت‌های اقتصادی-اجتماعی در پهنه سرزمین نسبت به قابلیت‌ها و منابع طبیعی و انسانی را آمایش سرزمین می‌گویند. از مهمترین خصوصیات برنامه آمایش سرزمین جامع نگری-کیفیت و سازماندهی فضایی آن است. پایدارترین آرایشی که به سه مولفه مهم جمعیت-سرمایه-منابع طبیعی و محیطی یک منطقه یا سرزمین ختم میشودبرنامه آمایش سرزمین نامیده می‌شود.

توسعه چاه در سفره آب به روش پیستون زنی

توسعه سفره آبی با ایجاد حرکات موجی (surging) به وسیله بالا و پایین بردن پیستون (plunger) در داخل لوله جدار صورت می‌گیرد. این روش توسعه بیشتر برای چاههای حفاری شده به طریقه ضربه‌ای صورت می‌گیرد.

قطر پیستون تقریباً برابر قطر داخلی لوله جدار می‌باشد. به هنگام پایین بردن آن، آب با فشار از شبکه‌ها وارد لایه آبدار می‌گردد و با ایجاد تلاطم و آشفتگی و در نتیجه جابجائی و شستشوی ذرات ریز سیلت، ماسه و رس را موجب شده و بهنگام بالا کشیدن پیستون، آب تزریقی به درون لایه به همراه گل و لای و رسوبات ریزدانه به درون لوله مشبک مکیده می‌شود.

ساده‌ترین نوع پیستون را بوسیله پیچیدن گونی، پارچه و یا طناب به دور گل کش و یا لوله‌های حفاری می‌توان ساخت. بدیهی است که قطر پیستون با قطر داخلی لوله جدار تقریبا هم‌اندازه می‌باشد. پیستون زنی در سفره‌های آبی رسی و سیلتی باعث اندود و انسداد شبکه‌ها توسط این رسوبات می‌گردد.

شرح کوتاهی بر کاربرد و دامنه مطالعات مدل های آب های زیرزمینی

مصارف بی رویه و کنترل نشده منابع آب‌سطحی و زیرزمینی، کاهش نزولات جوی، تمرکز مصرف در برخی نقاط (عدم تعادل بین تقاضا و پتانسیل تأمین آب)، الگوی کشت نامناسب و عدم آبیاری صحیح و حفر چاه های متعدد و بهره‌برداری بی برنامه از آن ها در چند دهه اخیر باعث بحرانی شدن وضعیت منابع آب‌ زیرزمینی در اکثر دشت های کشور شده است. به نحوی که سطح آب زیرزمینی در اغلب آبخوان های کشور به طور مداوم  سیر کاهشی داشته و متوسط افت سالانه در طول 15 سال گذشته در حد 12 متر بوده است.

کاهش سطح  تراز آب زیرزمینی دشت ها اثرات زیادی دارد و باعث افزایش هزینه استحصال آب و افزایش مصرف انرژی، کاهش کیفیت آب و ظهور پدیده فرونشست زمین می‌گردد. هرکدام از این عوامل پیامدهای منفی ثانویه نیز دارد. به عنوان نمونه با کاهش حجم آب قابل برداشت منابع زیرزمینی و افزایش هزینه استحصال آب، سطح زیرکشت محصولات کاهش و قیمت محصولات افزایش می‌یابد.

آموزش ترسیم خطوط جریان در نرم افزار GMS مدل MODFLOW


یکی از مهمترین المان های جریان آب زیرزمینی، شبکه آن یعنی شبکه جریان است. برای ترسیم شبکه جریان می توان پس از اجرای کامل مدل MODFLOW بر روی خطوط هم پتانسیل (و نه هم عمق) اقدام به ترسیم این شبکه نمود. نرم افزار GMS دارای قابلیت خودکار ترسیم شبکه جریان بوده و برای این منظور تنها باید گام های ذیل طی گردد:
ابتدا بر روی مدل اجرا شده MODFLOW (مدل واسنجی شده) و خروجی CCF که در واقع مشخص کننده جریان از هر سلول به سلول دیگر است (Cell by Cell Flow) کلیک راست کرده و گزینه CCF to Velocity Vectors را انتخاب نمایید. سپس لازم است تا در پنجره تنظیمات نمایش GMS اقدام به فعال سازی نمایش برداری های سرعت نمود که این کار همچنان که در تصویر زیر مشخص شده است از بخش انتهایی از تب 3D Grid Data صورت می پذیرد. با OK کردن نتیجه به شکل تصویر حاضر در عنوان خواهد بود.

مشکلات شیمیایی چاه های آب و عوامل ایجاد این مشکلات

چاههای آب تحت تأثیر عوامل مختلف فیزیکی و شیمیایی مثل ترکیب شیمیایی آبهای زیرزمینی، گازهای محلول، PH آب،‌ سرعت جریان آب، تغییرات دما، نوسانهای سطح آب زیرزمینی و فعالیت انواع باکتری‌ها، دچار جرم‌گرفتگی و خوردگی شده که مشکلات ناشی از این عوامل عمدتاً به شکل کاهش بازدهی چاه بروز می‌کند. شناخت این عوامل و نحوه تأثیر هر کدام بر ساختمان چاههای آب می‌تواند تا حد زیادی در کاهش بروز مشکلات حتی جلوگیری از تأثیر بیشتر آنها بر چاههای آب و افزایش طول عمق مفید آنها مؤثر باشد.

انواع شرایط مرزی در مدل سازی آب زیرزمینی

حل معادلات دیفرانسیل جزیی آلودگی آب های زیرزمینی مستلزم تعیین شرایط مرزی از نظر غلظت و استفاده از اطلاعات موجود در این مرزها می باشد. در غیر این صورت این معادلات غیرقابل حل خواهند بود. تعیین شرایط مرزی یکی از مشکل ترین مراحل در مدل سازی آب های زیرزمینی م یباشد. شرایط طبیعی مانند مرزهای غیرقابل نفوذ و همچنین مناطق تغذیه و تخلیه آبخوان، در اغلب موارد خیلی دورتر از محدوده مورد نظر در مدل قرار دارد. به نظر می رسد، بهترین کار در کاهش خطای تعیین شرایط مرزی، بسط و توسعه محدوده مدل تا سرحد های طبیعی آبخوان است که در اکثر موارد به دلیل حجیم شدن محدوده کاری، امکان پذیر نیست.

از طرف دیگر، عدم وجود یک شبکه خوب اندازه گیری غلظت آلودگی در آبخوان، انتخاب محدوده وسیعی را در مدل سازی توجیه نمی کند. محدوده بزرگ مدل سازی با اطلاعات و آمار اندک، نه تنها کمکی به اهداف مدل سازی نمی کند بلکه باعث خطای بیش تر به واسطه بالا رفتن عدم قطعیت، در نتایج می شود. لذا محدوده بیلان و مدل در بیش تر حالات با محدوده آبخوان متفاوت است.



آب های زیرزمینی - مبانی و مفاهیم و پروژه های تخصصی

آبخوان ها و سفره های آب زیرزمینی علی رقم آنکه بخش مهم ذخایر طبیعی آب شیرین جهان را تشکیل می دهند، به دلیل ماهیت پنهان از چشم خود، همواره بیشترین فشار ها را در استفاده های بی رویه بر خود تحمل کرده و تنش اساسی بیلان داشته های آبی یک محدوده در این بخش رخ داده است. مدل ها و شبیه سازهای کامپیوتری شناخته شده ای در این زمینه وجود دارد که از گستردگی کاملی به منظور مطالعات و مدیریت برخوردار است.



آب های سطحی - مبانی و مفاهیم و پروژه های تخصصی

آب های سطحی، اگرچه در دسترس ترین منابع برای بشر محسوب می شوند، اما از نظر پایدار بسیار آسیب پذیر و در عین حال بیشترین آلودگی را دریافت و حمل می کنند. همچنین حوادث شدید آب و هوایی مشخصا و حدقل به صورت بصری، بیشتر بر روی این دسته از منابع قابل شناسایی است. شناخت درست آب های سطحی با روش های هیدرولوژیکی یکی از اهداف ماست.



آب های زیر سطحی - مبانی و مفاهیم و پروژه های تخصصی

آب های زیر سطحی،اهمیت بسیار زیادی در ارتباط یابی بین منابع آب و گیاهان دارند. خشسالی ها و ترسالی ها در این مفهوم خود را بیشتر برای انسان نشان می دهند. در عین حال مهم است که بدانیم اندرکنش آب های زیرزمینی و آب های سطحی بر اساس وضعیت لایه ای که آب های زیرسطحی در آن واقع شده است روی می دهد. شناخت درست آب های سطحی با روش های هیدرولوژیکی یکی از اهداف ماست.



برنامه نویسی منعطف به زبان پایتون

عنوان مهندسی برازنده فردی است که با معادلات یک علم آشنایی مشخصی داشته باشد. آشنایی با معادلات و مفهومات علم هیدرولوژی امکان کار با زبان های اسکریپت منعطفی چون پایتون را فراهم می کند که در نتیجه بسیاری از مسائل و مشکلات تخصصی و استثنا در مهندسی آب، امکان حل دقیق و کامپیوتری را پیدا کنند.



دریافت داده های مکانی پرکاربرد در مهندسی آب

بخش مهمی از خطا در محاسبات مهندسی، منتشر شده از داده های پایه ضعیف است. در این بخش می توانید به مجموعه گسترده ای از داده های مکانی چه در فرمت رستری و چه وکتوری، به منظور استفاده در نرم افزارهای مهندسی دسترسی داشته باشید. به مجموعه به مرور زمان افزوده می شود. همچنین محتوای پیشین در صورت امکان بروزرسانی می شود.



دریافت داده ها و اطلاعات پرکاربرد در مهندسی آب

دامنه وسیع داده ها و اطلاعات محیطی، الزام به دسترسی مطمئن و بروز از این آمار و اطلاعات را نشان می دهد. با توجه به گستردگی منابع دستیابی به داده در سطح اینترنت، ما در اینجا مجموعه بزرگی از داده ها را جمع آوری کرده ایم. شما می تواند به همراه توصیحات به این محتوا دسترسی داشته باشید.



درباره بهترين هاي بيسيـــن بدانيد...

Bird

يکي از مهمترين اهداف اين سايت تهيه آموزش هاي روان از ابزارهاي کاربردي علوم آب است.

اهميت مطالعات محيطي با ابزارهاي نوين در چيست؟

امروز با فارغ التحصيلي جمع کثير دانشجويان سالهاي گذشته و حال، با گذر از کمي گرايي ديگر صرف وجود مدارک دانشگاهي حرف اول را در بازار کار نمي زند؛ بلکه سنجش ديگري ملاک؛ و شايسته سالاري به ناچار! باب خواهد شد. يکي از مهم ترين لوازم توسعه علمي در هر کشور و ارائه موضوعات ابتکاري، بهره گيري از ابزار نوين است، بيسين با همکاري مخاطبان مي تواند در حيطه علوم آب به معرفي اين مهم بپردازد.

جستجو در بيسين
سایت مهندسی آب

بیسین - سایت تخصصی مهندسی آب

سایت بیسین با معرفی مهم ترین و کاربردی ترین نرم افزارها و مدل های شبیه سازی در حیطه مهندسی آب، تلاش به تهیه خدمات یکپارچه و محلی از محاسبات هیدرولوژیکی و هیدرولیکی می کند

اطلاعات سايت

  • www.Basin.ir@gmail.com
  • بهزاد سرهادي
  • شناسه تلگرام: Basin_Ir_bot
  • شماره واتساپ: 09190622992-098
  • شماره تماس: 09190622992-098

W3Schools

W3Schools