پایتون :: بیسین - سایت تخصصی مهندسی آب

ابزار وبمستر

Bootstrap Example

عضويت در خبرنامه ايـميـل پايگاه بيسيــن - عضويت پس از کليک بر روي لينک فعال سازي که براي شما ارسال خواهد شد تکميل مي شود




پیش بینی سری زمانی در پایتون - قسمت 6


پنجره سازی داده ها

مدل های موجود در این مجموعه آموزشی بر اساس پنجره ای از نمونه های متوالی داده ها، مجموعه ای از پیش بینی ها را ایجاد می کنند.


ویژگی های اصلی پنجره های ورودی عبارتند از:


پیش بینی سری زمانی در پایتون - قسمت 4


تقسیم داده ها

ما برای مجموعه ها، اعتبار سنجی و آزمون از تقسیم (70٪، 20٪، 10٪) استفاده خواهیم کرد. توجه داشته باشید که داده ها قبل از تقسیم به طور تصادفی تغییر نمی کنند. این به دو دلیل است.


پیش بینی سری زمانی در پایتون - قسمت 1


این آموزش مقدمه ای برای پیش بینی سری زمانی با استفاده از TensorFlow است. چند مدل مختلف از جمله شبکه های عصبی Convolutional و Recurrent یعنی (CNN ها و RNN ها) را ایجاد می کند.


این در دو بخش اصلی، با زیر بخش ها پوشش داده شده است:

  • پیش بینی برای یک بازه زمانی واحد:
    • یک ویژگی واحد
    • همه ویژگی ها

پیش بینی با مدل های LSTM در کراس


حافظه طولانی کوتاه-مدت (به انگلیسی: Long short-term memory) یا به اختصار ال‌اس‌تی‌ام (تلفظ تحت‌اللفظی LSTM)، یک معماری شبکه عصبی بازگشتی (یک شبکه عصبی مصنوعی) است که در سال ۱۹۹۷ میلادی توسط سپ هوخرایتر و یورگن اشمیدهوبر ارائه شد، و بعداً در سال ۲۰۰۰ میلادی توسط فیلیکس ژرس بهبود داده شد.


فهرست آموزش - پیش بینی سری زمانی در پایتون


پایتون یک زبان برنامه نویسی ساده و قدرتمند است. از بکارگیری واژه ساده، منظورم این است که آن را بسیار منعطف تر از زبان هایی مانند C می یابید اگر چه کند است. و از واژه قدرتمند، منظورم این است که می توان بسیاری از کدهای موجود را که در C، C++، Fortran و غیره نوشته شده است، به آن چسباند. جامعه کاربر این زبان رو به رشد است که بسیاری از ابزار را به راحتی در دسترس می کند. شاخص  پایتون، که یک میزبان بزرگ از کد پایتون است، در حال حاضر دارای بیش از چند ده هزار بسته است، که در مورد محبوبیت آن صحبت می کنند. استفاده از پایتون در جامعه هیدرولوژی نسبت به سایر زمینه ها خیلی سریع نیست، اما امروزه بسیاری از بسته های هیدرولوژیکی جدید در حال توسعه هستند. پایتون دسترسی به ترکیب خوبی از ابزارهای GIS، ریاضیات، و آمار و غیره را فراهم می کند، که باعث می شود یک زبان مفید برای هیدرولوژیست باشد.

پیش بینی سری زمانی داده های آب و هوا در پایتون


در علوم مختلف، به یک توالی یا دنباله از متغیرهای تصادفی که در فاصله های زمانی ثابت نمونه برداری شده باشند، اصطلاحاً سری زمانی یا پیشامد تصادفی در مقطع زمان می‌گویند. به عبارت دیگر منظور از یک سری زمانی مجموعه‌ای از داده‌های آماری است که در فواصل زمانی مساوی و منظمی جمع‌آوری شده باشند. روش‌های آماری ای که این گونه داده‌های آماری را مورد استفاده قرار می‌دهد مدل های تحلیل سری‌ زمانی نامیده می‌شود. مانند فروش فصلی یک شرکت طی سه سال گذشته. یک سری زمانی مجموعهٔ مشاهدات تصادفی ای است که بر اساس زمان مرتب شده باشند. مثال‌های آن در اقتصاد و حتی رشته‌های مهندسی دیده می‌شود.

این کد نحوه انجام پیش بینی جدول زمانی را با استفاده از مدل LSTM نشان می دهد.


واسنجی مدل آب زیرزمینی با برنامه نویسی و یادگیری ماشین


یادگیری ماشین در آبهای زیرزمینی و مدل کالیبراسیون با MODFLOW ،Flopy ،PySal و Scikit Learn موضوع این پست است. کیفیت کار مدل سازی آب های زیرزمینی به سه عامل متکی است: توزیع مکانی-زمانی داده های مشاهده شده، ساخت و کالیبراسیون مدل و نتیجه گیری های حاصل از شبیه سازی های پیش بینی شده. بر اساس پیچیدگی های ابزارهای عددی، مقدار پارامترهای درگیر، کالیبراسیون آب های زیرزمینی می تواند یک چالش جدی برای مبتدیان، طراحان متوسط ​​یا پیشرفته با بسیاری از موفقیت ها و شکست ها باشد. نتیجه گیری اغلب با استرس روانی همراه است.


راهنمای مرجع فنی HEC-HMS - اجرای HEC-HMS با Jython


اجرای HEC-HMS با Jython - از Jython می توان برای اجرای HMS، یک برنامه جاوا، به روشی "بدون سر" استفاده کرد. حداقل به HEC-HMS نیاز خواهید داشت. همچنین ممکن است اسکریپت خود را از طریق یک فایل دسته ای یا IDE اجرا کنید، در این صورت شما به یک نمونه از Jython نیاز خواهید داشت.


مدل های چند لایه پرسپترون برای پیش بینی سری زمانی داده آب


پرسپترون چند لایه یا به اختصار MLP می توانند برای پیش بینی سری زمانی استفاده شوند. چالشی در استفاده از MLP برای پیش بینی سری زمانی در تهیه داده ها وجود دارد. به طور خاص، مشاهدات تأخیر (لگ) مشاهداتی باید به بردارهای اجزا مسطح شود. در این آموزش، شما می آموزید که چگونه مجموعه ای از مدل های MLP را برای طیف وسیعی از مسائل پیش بینی سری زمانی استاندارد ایجاد کنید. هدف این آموزش ارائه نمونه های مستقل از هر مدل در مورد هر نوع مسئله سری زمانی به عنوان الگویی است که می توانید آن را کپی کرده و برای مشکل پیش بینی سری زمانی خاص خود تطبیق دهید.


تجزیه و تحلیل تغییر پوشش زمین با پایتون و GDAL


تصاویر ماهواره ای توانایی دیدن سطح زمین در سال های اخیر را برای ما فراهم کرده است، اما ما در درک پویایی پوشش زمین و تعامل با عوامل اقتصادی، جامعه شناختی و سیاسی چندان موفق نبوده ایم. برخی از نقص های این تجزیه و تحلیل در استفاده از نرم افزار تجاری GIS مشاهده شد، اما محدودیت های دیگری نیز در نحوه اعمال فرآیندهای منطقی و ریاضی بر روی مجموعه ای از تصاویر ماهواره ای وجود دارد. کار با داده های جغرافیایی روی پایتون امکان فیلتر کردن، محاسبه، برش، تلفیق و صادرات داده های رستری و برداری را با استفاده شرایط کارآمدی از توان محاسباتی فراهم می کند و دامنه بیشتری در تجزیه و تحلیل داده ها دارد.


راهنمای دریافت داده ماهواره - داده بارش با اسکریپت پایتون

شکل 1: به عنوان مثال نتایج جستجوی Mirador برای IMERG.


بررسی اجمالی:

داده های GPM IMERG را با استفاده از پایتون بخوانید.

این دستورالعمل نحوه خواندن داده ها از مجموعه داده IMERG ماموریت جهانی اندازه گیری بارش (GPM) با استفاده از پایتون را نشان می دهد.


بهترین شکل:

کاربر می خواهد داده های GPM IMERG را با استفاده از پایتون بخواند


تهیه لایه تنوع پوشش زمین با eo-learn - قسمت 1

 

eo-Learn یک کتابخانه پایتون منبع باز است که به عنوان پلی بین ارتباط زمین مشاهده / سنجش از راه دور و اکوسیستم Python برای علم داده و یادگیری ماشین عمل می کند. ما در حال حاضر یک پست وبلاگ اختصاصی در اینجا داریم که شما را به خواندن تشویق می کنید. این کتابخانه از آرایه های بی شماری و هندسه های زیبا به منظور ذخیره و اداره داده های سنجش از دور استفاده می کند. هم اکنون در منبع GitHub ما موجود است و می توانید مستندات بیشتری را در صفحه ReadTheDocs بیابید.


مدل زمین سه بعدی با استفاده از شبکه های عصبی با Python Scikit Learn و Vtk


دانشمندان علوم زمین برای انجام شبیه سازی یا ارزیابی نیاز به بهترین ارزیابی از محیط زمین شناسی دارند. علاوه بر پیشینه زمین شناسی، ساخت مدل های زمین شناسی همچنین نیاز به مجموعه ای کامل از روش های ریاضی دارد مانند شبکه های بیزی، Cokrigging ، SVM، شبکه های عصبی، مدل های Stochastic برای تعریف اینکه می تواند نوع سنگ / خاصیت سنگ باشد در هنگام اطلاعات از روی نقشه های حفاری یا ژئوفیزیک واقعاً کمیاب است.

مدل سازی آب های زیرزمینی منطقه ای با MODFLOW و Model Muse


مدل سازی آب های زیرزمینی می تواند در مقیاس های زمانی و مکانی مختلف انجام شود ، از یک آزمایشگاه تا یک حوضه کامل ، از حالت پایدار تا هزاران سال. هر الزام مدل سازی دارای یک تفسیر خاص و تنظیم شرایط مرزی است. این آموزش در مورد نمونه ای از مدل سازی آب های زیرزمینی منطقه ای در حوضه آند در شرایط پایدار است ، این آموزش کل مجموعه مراحل مدل سازی را به عنوان تولید شبکه و واردات ارتفاع و همچنین شبیه سازی مدل و ارزیابی نتیجه را در بر می گیرد. مدل سازی عددی در نرم افزار منبع باز به عنوان MODFLOW با Model Muse انجام شد که هر دو توسط USGS تهیه شده اند.


قسمت تاریک پایتون برای هیدرولوژی


هیدروژئولوژی و کابوس وابستگی های نامشخص است

آینده نزدیک پردازش داده ها برای Hydrology / Hydrogeology در پایتون 3 نوشته شده است و بسیاری از دانشگاه ها و موسسات از آموزش C ++ ،Matlab یا Fortran به Python در حال تغییر هستند. میزان ابزارها، بسته ها، کدها و نوت بوک های Ipython موجود برای پردازش داده ها و تجزیه و تحلیل داده های مربوط به آب، حتی با موفقیت بسیار بالا در تکرارپذیری تجزیه و تحلیل داده ها، شگفت آور است.


تخمین حداکثر سرعت پمپاژ با MODFLOW و Model Muse - آموزش


بهره وری پمپاژ چاه به محیط های متخلخل آبخوان، ضخامت و گسترش آبخوان، فرایندهای فیزیکی چرخه آب مربوط به رژیم جریان آب های زیرزمینی، طرح های طراحی چاه و عملیات آن بستگی دارد. تعیین حداکثر میزان پمپاژ از یک چاه کلیدی برای روند ساخت و ساز خوب است، زیرا در تعیین حداکثر نرخ مربوط به اندازه پمپ، صدور مجوز، خرید مواد هدایت و ابعاد امکانات ذخیره سازی آب مهم است. این در برآورده شدن امکان سنجی پروژه، برآورد حداکثر سرعت برای پاسخگویی به تقاضای پروژه در مراحل مختلف آن اهمیت دارد.


نمودار مقایسه مقدار مشاهداتی و محاسباتی با Muse Model و پایتون


به منظور تخمین دقیق تابع هدف، مدلسازی آب های زیرزمینی با MODFLOW و سایر کدها به صورت مدلسازی معکوس تعریف می شود که در آن پارامترهای کلیدی از طریق مقایسه نتایج مدل با داده های مشاهده شده محاسبه می شود. این فرایند مقایسه طولانی است، استفاده از معیارهای پذیرش و تحلیل روند متاثر شرایط مرزی است.


DEM و منحصر کردن شبکه جریان با پایتون و Pyshed - آموزش


مقدمه

در دوران مدرن، الگوریتم های کامپیوتری می توانند ویژگی های هیدرولوژیکی را از ساخت توپوگرافی تفسیر کنند. پس از تعریف یک حوضه زهکشی، تمام آب هایی که در یک منطقه قرار می گیرند، باید در یک خروجی مشترک با گرانش به عنوان تنها نیروی محرکه تخلیه شوند. برای یک توپوگرافی حوضه ای "هیدرولوژیکی"، تمام شبکه های زهکشی باید مسیر نزولی را به نقطه تخلیه داشته باشند، بنابراین هر سینک یا depressions "مسیر" روبروی سطح را متوقف می کند و کامپیوتر از شبکه رودخانه عبور نخواهد کرد.


مثال پایه ای از مدل سازی نفوذ آب شور با SEAWAT و Flopy


SEAWAT یک مدل توسعه یافته توسط USGS برای شبیه سازی چگالی جریان آب زیرزمینی سه بعدی با انتقال شوری و گرما است. این نرم افزار بر اساس MODFLOW-2000 و MT3DMS است و در آخرین نسخه آن می تواند تغییرات ویسکوزیته را شبیه سازی کند و زمان اجرای سریع تر را فراهم کند. SEAWAT در Flopy، کتابخانه پایتون برای ساخت، اجرا و نمایش مدل MODFLOW اجرا می شود. این آموزش دارای جریان کاری کامل برای ایجاد و ارائه مثال پایه ای از ابزار سالین با SEAWAT و Flopy در یک نوت بوک Jupyter است.


آموزش تعریف جهت جریان در یک مدل MODFLOW با پایتون و Flopy


نشان دادن مسیر جریان آب زیرزمینی برای درک شرایط واقعی و پیش بینی شده رژیم جریان آب زیرزمینی مفید است. این جهت و بزرگنمایی جهت و  چشم انداز سریع جریان های اصلی آب زیرزمینی و بین خطوط منابع و نقاط تخلیه را نشان می دهد. بردارهای جریان ویژگی های بسیار رایج در مدل سازی آب های زیرزمینی هستند که با استفاده از پشته منبع باز تا زمانی که توسعه کتابخانه Flopy وجود ندارد، دارای یک ابزار ویژه برای ارائه است.


آموزش محاسبه NDVI از تصاویر Landsat8 با پایتون 3 و Rasterio


NDVI یک شاخص گیاهی است که به طور گسترده ای برای ارزیابی اثرات زیست محیطی، ارزیابی کشاورزی و معیارهای تغییر کاربری زمین مورد استفاده قرار می گیرد. روش محاسبه NDVI در نرم افزارهای سیستم اطلاعات جغرافیایی (GIS) به عنوان QGIS ساده و مستقیم است. با این حال، کارایی تنها مربوط به یک تصویر است، اما اگر یک سری از تصاویر را تجزیه و تحلیل کنیم یا اگر تصاویری با منابع محاسباتی محدود داشته باشیم، ما باید برخی از فیلترهای 


درباره بهترين هاي بيسيـــن بدانيد...

Bird

يکي از مهمترين اهداف اين سايت تهيه آموزش هاي روان از ابزارهاي کاربردي علوم آب است.

اهميت مطالعات محيطي با ابزارهاي نوين در چيست؟

امروز با فارغ التحصيلي جمع کثير دانشجويان سالهاي گذشته و حال، با گذر از کمي گرايي ديگر صرف وجود مدارک دانشگاهي حرف اول را در بازار کار نمي زند؛ بلکه سنجش ديگري ملاک؛ و شايسته سالاري به ناچار! باب خواهد شد. يکي از مهم ترين لوازم توسعه علمي در هر کشور و ارائه موضوعات ابتکاري، بهره گيري از ابزار نوين است، بيسين با همکاري مخاطبان مي تواند در حيطه علوم آب به معرفي اين مهم بپردازد.

جستجو در بيسين


ابزارهاي نوين

بیسین - سایت تخصصی مهندسی آب

بیسین جهت ارائه مطالب و خدمات تخصصی در حیطه نرم افزارها و مدل های شبیه سازی مهندسی آب با رویکرد پژوهشی-آموزشی ایجاد شده است که توسعه خود را در گرو همکاری مخاطبان می بیند.

اطلاعات سايت

  • www.Basin.ir@gmail.com
  • بهزاد سرهادي
  • شناسه تلگرام: SubBasin
  • شماره واتساپ: 09190622992-098
  • شماره تماس: 09190622992-098

W3Schools