پایتون :: بیسین - سایت تخصصی مهندسی آب

ابزار وبمستر

Bootstrap Example

عضويت در خبرنامه ايـميـل پايگاه بيسيــن - عضويت پس از کليک بر روي لينک فعال سازي که براي شما ارسال خواهد شد تکميل مي شود

پشتيباني شده با بيسين

تخمین حداکثر سرعت پمپاژ با MODFLOW و Model Muse - آموزش


بهره وری پمپاژ چاه به محیط های متخلخل آبخوان، ضخامت و گسترش آبخوان، فرایندهای فیزیکی چرخه آب مربوط به رژیم جریان آب های زیرزمینی، طرح های طراحی چاه و عملیات آن بستگی دارد. تعیین حداکثر میزان پمپاژ از یک چاه کلیدی برای روند ساخت و ساز خوب است، زیرا در تعیین حداکثر نرخ مربوط به اندازه پمپ، صدور مجوز، خرید مواد هدایت و ابعاد امکانات ذخیره سازی آب مهم است. این در برآورده شدن امکان سنجی پروژه، برآورد حداکثر سرعت برای پاسخگویی به تقاضای پروژه در مراحل مختلف آن اهمیت دارد.


نمودار مقایسه مقدار مشاهداتی و محاسباتی با Muse Model و پایتون


به منظور تخمین دقیق تابع هدف، مدلسازی آب های زیرزمینی با MODFLOW و سایر کدها به صورت مدلسازی معکوس تعریف می شود که در آن پارامترهای کلیدی از طریق مقایسه نتایج مدل با داده های مشاهده شده محاسبه می شود. این فرایند مقایسه طولانی است، استفاده از معیارهای پذیرش و تحلیل روند متاثر شرایط مرزی است.


DEM و منحصر کردن شبکه جریان با پایتون و Pyshed - آموزش


مقدمه

در دوران مدرن، الگوریتم های کامپیوتری می توانند ویژگی های هیدرولوژیکی را از ساخت توپوگرافی تفسیر کنند. پس از تعریف یک حوضه زهکشی، تمام آب هایی که در یک منطقه قرار می گیرند، باید در یک خروجی مشترک با گرانش به عنوان تنها نیروی محرکه تخلیه شوند. برای یک توپوگرافی حوضه ای "هیدرولوژیکی"، تمام شبکه های زهکشی باید مسیر نزولی را به نقطه تخلیه داشته باشند، بنابراین هر سینک یا depressions "مسیر" روبروی سطح را متوقف می کند و کامپیوتر از شبکه رودخانه عبور نخواهد کرد.


مثال پایه ای از مدل سازی نفوذ آب شور با SEAWAT و Flopy


SEAWAT یک مدل توسعه یافته توسط USGS برای شبیه سازی چگالی جریان آب زیرزمینی سه بعدی با انتقال شوری و گرما است. این نرم افزار بر اساس MODFLOW-2000 و MT3DMS است و در آخرین نسخه آن می تواند تغییرات ویسکوزیته را شبیه سازی کند و زمان اجرای سریع تر را فراهم کند. SEAWAT در Flopy، کتابخانه پایتون برای ساخت، اجرا و نمایش مدل MODFLOW اجرا می شود. این آموزش دارای جریان کاری کامل برای ایجاد و ارائه مثال پایه ای از ابزار سالین با SEAWAT و Flopy در یک نوت بوک Jupyter است.


آموزش تعریف جهت جریان در یک مدل MODFLOW با پایتون و Flopy


نشان دادن مسیر جریان آب زیرزمینی برای درک شرایط واقعی و پیش بینی شده رژیم جریان آب زیرزمینی مفید است. این جهت و بزرگنمایی جهت و  چشم انداز سریع جریان های اصلی آب زیرزمینی و بین خطوط منابع و نقاط تخلیه را نشان می دهد. بردارهای جریان ویژگی های بسیار رایج در مدل سازی آب های زیرزمینی هستند که با استفاده از پشته منبع باز تا زمانی که توسعه کتابخانه Flopy وجود ندارد، دارای یک ابزار ویژه برای ارائه است.


آموزش محاسبه NDVI از تصاویر Landsat8 با پایتون 3 و Rasterio


NDVI یک شاخص گیاهی است که به طور گسترده ای برای ارزیابی اثرات زیست محیطی، ارزیابی کشاورزی و معیارهای تغییر کاربری زمین مورد استفاده قرار می گیرد. روش محاسبه NDVI در نرم افزارهای سیستم اطلاعات جغرافیایی (GIS) به عنوان QGIS ساده و مستقیم است. با این حال، کارایی تنها مربوط به یک تصویر است، اما اگر یک سری از تصاویر را تجزیه و تحلیل کنیم یا اگر تصاویری با منابع محاسباتی محدود داشته باشیم، ما باید برخی از فیلترهای 


ثبت 127 میلی‌متر بارش در 125 روز ابتدای سال آبی

حجم بارش‌های فصل پاییز کشور از ابتدای سال آبی 98-97 (اول مهرماه) تاکنون به 127.3 میلی‌متر رسید. بر اساس آمار بارندگی تجمعی حوضه‌های آبریز درجه‌ یک کشور، میزان بارندگی‌ها طی مدت مشابه سال آبی 97-96 در این حوضه‌ها 41 میلی‌متر گزارش شده است.

این میزان بارش، از سال آبی گذشته 86.3 میلی‌متر بیشتر شده و نسبت به میانگین بلندمدت 50 ساله از 105.4 میلی‌متر رشد برخوردار بوده است.


تغییر و اجرای با پایتون یک مدل آزمون پمپاژ در MODFLOW


کار با اینترفیس های کاربری گرافیکی (GUI) می تواند آهسته باشد، زمانی که یک فرد می خواهد یک خطای محرمانه محکم بر روی یک مدل جریان جوی آب اجرا کند. تطبیق تست پمپاژ نیاز به مقدار زیادی تلاش برای تنظیم پارامترهای ثابت و گذرا به عنوان هدایت هیدرولیکی، انحصارطلبی عمودی، ذخیره سازی ویژه و عملکرد خاص دارد.


تخمین تغذیه بارش روزانه آبخوان با MODFLOW UZF و پایتون


فرایندهای چرخه آب سطحی و زیرزمینی مربوط به بارش (شکل و شدت) و پویایی رطوبت خاک است. این پویایی رطوبت خاک توسط نوع خاک و منطقه ریشه در یک مقیاس زمانی در هر روز یا حتی ساعتی تعیین می شود. این پدیده ها در کتاب های متنی هیدروژئولوژی متداول مورد توجه و بررسی قرار نگرفته اند، شاید به دلیل استفاده شدید از ابزارهای مدل سازی و مفهوم سازی و اعتبارسنجی پیچیده.

مطالعه آب های زیرزمینی مطالعه عدم قطعیت است. این معضل چیزی است که شما در حال تحصیل نمی بینید و فقط با مشاهدات خاصی در پیزومترها یا جریان پایه درک می کنید. تا زمانی که بعضی از ابزارهای جدیدی ایجاد شود که به ما اجازه می دهد که آب های زیرزمینی را درون صورت های متخلخل ببینیم، یک رزونانس مغناطیسی را خواهیم داشت، باید تلاش های تحلیلی قوی را برای درک منابع آب زیرزمینی انجام دهیم.


تجزیه و تحلیل باران های منطقه ای با پایتون


مقدمه

ما می خواهیم میانگین سالانه بارش را در مقیاس منطقه ای برای شمال پرو تحلیل کنیم. این مجموعه دارای 20 ایستگاه از ساحل بیابانی پرو، آند و جنگل های بارانی با تفاوت های ارتفاع و میزان بارش است.

هدف اصلی این است که الگوها و روندهای بارش را تجزیه و تحلیل کرده و آنها را با استفاده از پایتون و با استفاده از روش های مختلف ترسیم کنیم.

برای این کار ما از نرم افزار IPython که شما می توانید بر روی رایانه خود نصب کنید یا از wakari.io آن را در ابر مجازی اجرا کنید استفاده نمایید. شما می توانید اطلاعات ایستگاه برای این تمرین را در اینجا دانلود کنید.


استراتژی بهبود دقت موقعیت مکانی مجوزهای منابع آبی - بخش اول


قدیمی ترین و بزرگترین منطقه مدیریت آب در فلوریدا یک استراتژی برای بهبود دقت موقعیت مکانی مرزهای مجوز در نظر دارد که در GIS نگهداری و توسعه داده شده است. با استفاده از مرزهای بسته، که دارای دقت افقی بوده و با استانداردهای دقت ملی نقشه ها را برابری می کند، اداره ناحیه مجبور به انجام معامله ای بزرگ برای بهبود قابل توجه در دقت مکانی نیست.


HydroConnect چیست؟ ابزار داده هیدرلوژیک


HydroConnect یک ابزار عمومی و پیشرفته برای حفظ طیف گسترده ای از پردازش هیدرولوژیکی است. برای مثال می توان از داده های مدل از اندازه گیری ها استفاده کرد و یا پس از پردازش نتایج شبیه سازی را حفظ کرد. HydroConnect به طور کامل بر اساس بسته Vistrails نرم افزار منبع باز (www.vistrails.org) است و از دو ماژول سفارشی برای هماهنگ سازی داده ها استفاده می کند (که FileSync و FileSyncManager نامیده می شود). این ماژول ها برای مدل ملی و مرکز داده هلندی (NMDC)، همکاری چندین وزارتخانه هلندی جهت به اشتراک گذاشتن دانش، توسعه داده شدند. HydroConnect به همین نحو به منظور مدیریت گردش کار است، جایی که کابر محاسباتی می تواند


زبان برنامه نویسی پایتون برای مهندسی آب و هیدرولوژی


1.1 چرا پایتون؟

پایتون یک زبان برنامه نویسی ساده و قدرتمند است. از بکارگیری واژه ساده، منظورم این است که آن را بسیار منعطف تر از زبان هایی مانند C می یابید اگر چه کند است. و از واژه قدرتمند، منظورم این است که می توان بسیاری از کدهای موجود را که در C، C++، Fortran و غیره نوشته شده است، به آن چسباند. جامعه کاربر این زبان رو به رشد است که بسیاری از ابزار را به راحتی در دسترس می کند. شاخص  پایتون، که یک میزبان بزرگ از کد پایتون است، در حال حاضر دارای بیش از چند ده هزار بسته است، که در مورد محبوبیت آن صحبت می کنند. استفاده از پایتون در جامعه هیدرولوژی نسبت به سایر زمینه ها خیلی سریع نیست، اما امروزه بسیاری از بسته های هیدرولوژیکی جدید در حال توسعه هستند. پایتون دسترسی به ترکیب خوبی از ابزارهای GIS، ریاضیات، و آمار و غیره را فراهم می کند، که باعث می شود یک زبان مفید برای هیدرولوژیست باشد. در زیر مزایای عمده پایتون برای هیدرولوژیست آمده است:


لزوم آشنایی هیدرولوژیست با زبان برنامه نویسی Python


در معرفی IGWMC و CSM باید گفت که اگر چه به قدرت ابزار هیدروژئولوژیکی نیستند، با این حال زبان برنامه نویسی Python به علت قابلیت های محاسباتی و گرافیکی آن در جامعه هیدرولوژیکی مورد علاقه است. بهتر از همه، اینکه آنها رایگانند. مکان خوبی برای یادگیری در مورد پایتون سایت توسعه دهنده آن به نشانی www.python.org است. دانلود برای چندین سیستم عامل در دسترس است. نسخه ای که در این بررسی در نظر گرفته شده در آدرس اینترنتی www.enthought.com قابل دسترس است که تحت ویندوز اجرا می شود.


آموزش پایتون: Pickling and Scaling


در آموزش های پیشین یادگیری ماشین با Python، ما پیش بینی را با استفاده از رگرسیون انجام دادیم و سپس با ماژول Matplotlib این پیش بینی را صورت دادیم. اکنون در اینجا درباره بعضی مراحل بعدی صحبت خواهیم کرد.


به یاد می آورم، اولین بار که من در تلاش بودم تا در مورد یادگیری ماشین بیاموزم، بسیاری از نمونه های تشریحی تنها تا آموزش و آزمون را پوشش می دادند، و سپس کاملا و بیکباره به قسمت پیش بینی پرش می کردند. از منابعی که آموزش، آزمون و پیش بینی بخشی را انجام می دادند، من حتی یک مورد را پیدا نکردم که الگوریتم را به وضوح شرح دهد. با مثال ها، و داده های کلی که اساسا بسیار کوچک هستند، بنابراین روند آموزش، آزمون و پیش بینی نسبتا سریع است. با این حال، در دنیای واقعی، داده ها احتمالا بزرگتر هستند و پردازش بسیار طولانی تر است. از آنجا که هیچ کس واقعا درباره این مرحله مهم صحبت نکرده بود، در اینجا قصد من این است که مطالب اطلاعاتی در مورد پردازش زمان و صرفه جویی در الگوریتم شما را شامل شود.


آموزش پایتون: رگرسیون - یادگیری ماشین و آزمون


خوش آمدید به بخش چهارم از آموزش ماشین با سری آموزش Python. در آموزش های قبلی، داده های اولیه را به دست آوردیم، ما آن را به صورت دلخواهی تغییر دادیم و دستکاری و اصلاح کردیم، و سپس شروع به تعریف ویژگی هایمان کردیم. Scikit-Learn اساسا نیازی به کار با Pandas و فریم های داده ندارد، من فقط ترجیح می دهم اطلاعات مربوط به آن را مدیریت کنم، زیرا سریع و کارآمد است. در عوض، Scikit-learn اساسا نیاز به آرایه های numpy دارد. داده های فرعی پانداها به راحتی می توانند به آرایه های NumPy تبدیل شوند، بنابراین فقط برای انجام کار برای ما صورت می پذیرد.


درباره بهترين هاي بيسيـــن بدانيد...

Bird

يکي از مهمترين اهداف اين سايت تهيه آموزش هاي روان از ابزارهاي کاربردي علوم آب است.

اهميت مطالعات محيطي با ابزارهاي نوين در چيست؟

امروز با فارغ التحصيلي جمع کثير دانشجويان سالهاي گذشته و حال، با گذر از کمي گرايي ديگر صرف وجود مدارک دانشگاهي حرف اول را در بازار کار نمي زند؛ بلکه سنجش ديگري ملاک؛ و شايسته سالاري به ناچار! باب خواهد شد. يکي از مهم ترين لوازم توسعه علمي در هر کشور و ارائه موضوعات ابتکاري، بهره گيري از ابزار نوين است، بيسين با همکاري مخاطبان مي تواند در حيطه علوم آب به معرفي اين مهم بپردازد.

جستجو در بيسين


ابزارهاي نوين

بیسین - سایت تخصصی مهندسی آب

بیسین جهت ارائه مطالب و خدمات تخصصی در حیطه نرم افزارها و مدل های شبیه سازی مهندسی آب با رویکرد پژوهشی-آموزشی ایجاد شده است که توسعه خود را در گرو همکاری مخاطبان می بیند.

اطلاعات سايت

  • www.Basin.ir@gmail.com
  • بهزاد سرهادي
  • تاريخ امروز:
  • شناسه تلگرام: SubBasin
  • شماره تماس: 09190622992-098